Publications

The findings obtained in the AutoQML research project will be prepared for the scientific community in a series of publications as key research results. 

Scientific publications 

[1] H. Stühler, D. Pranjić and Christian Tutschku "Evaluating Quantum Support Vector Regression Methods for Price Forecasting Applications", 2024, https://www.scitepress.org/Link.aspx?doi=10.5220/0012351400003636

[2] D. Klau, H. Krause,  D. A. Kreplin, M. Roth, C. Tutschku and M. Zöller "AutoQML – A Framework for Automated Quantum Machine Learning", 2023, https://www.digital.iao.fraunhofer.de/content/dam/iao/ikt/de/documents/AutoQML_Framework.pdf

[3] D. A. Kreplin, M. Willmann, J. Schnabel, F. Rapp and M. Roth "sQUlearn – A Python Library for Quantum Machine Learning", 2023, https://doi.org/10.48550/arXiv.2311.08990
 
[4] J. Berberich, D. Fink, D. Pranjić, C. Tutschku and C. Holm, "Training robust and generalizable quantum models", 2023, https://doi.org/10.48550/arXiv.2311.11871
 
[5] D. Klau, M. Zöller and C. Tutschku, "Bringing Quantum Algorithms to Automated Machine Learning: A Systematic Review of AutoML Frameworks Regarding Extensibility for QML Algorithms", 2023, https://doi.org/10.48550/arXiv.2310.04238
 
[6] H. Stühler, M.-A. Zöller, D. Klau, A. Beiderwellen-Bedrikow and C. Tutschku, "Benchmarking Automated Machine Learning Methods for Price Forecasting Applications", 2023, https://doi.org/10.48550/arXiv.2304.14735
 
[7] F. Rapp and M. Roth, "Quantum Gaussian Process Regression for Bayesian Optimization", 2023, https://doi.org/10.48550/arXiv.2304.12923
 
[8] P.-A. Matt, R. Ziegler, D. Brajovic, M. Roth and M. F. Huber, "A Nested Genetic Algorithm for Explaining Classification Data Sets with Decision Rules", 2022, https://doi.org/10.48550/arXiv.2209.07575